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ABSTRACT

This paper introduces a hybrid metaheuristic of (Bated Annealing (SA) and Genetic Algorithm (GA)dan
demonstrates its superiority over the two hybridiadggorithms in terms of their simulation time aswitware complexity
measurement when used to solve a typical UniveEsigmination Timetabling Problem (ETP).Preparatba timetable
consists basically of allocating a number of evéata finite number of time periods (also calleats) in such a way that a
certain set of constraints is satisfied. The devwlamodel was used to schedule the first semesteniaation of Ladoke
Akintola University of Technology, Ogbomoso Nigedaring the 2010/2011 session. A task involvinglP0, students,
652 courses, 52 examination venues for 17days éxguSaturdays and Sundays.The use of the impledemidel
resulted in significant time savings in the schedubf the timetable, a shortening of the examorageriod and a well
spread examination for the students. Also, nontheflecturers / examination invigilators was doubd®ked or booked
successively. It was clearly evident that the h/bmodel outperformed Simulated Annealing and Genglgorithm in

most of the evaluated parameters.

KEYWORDS: Hybrid Model, Simulated Annealing, Genetic Algarit, Examination Timetabling Problem, Simulation

Time and Software Complexity
INTRODUCTION

Preparation of a timetable consists basically tafcating a number of events to a finite numberimfet periods
(also called slots) in such a way that a certaioeonstraints is satisfied. Two types of constsaare usually considered,
hard constrains, that have to be fulfilled undercatumstances, and soft constraints, that shoeléulfilled if possible.
In some cases, it is not possible to fully satafithe constraints, and the aim turns to be figdinod solutions subject to
certain quality criteria (e.g., minimizing the nuentof violated constraints, or alternatively satitfon of hard constraints,
while the number of violated soft constraints isimized (Keshawt al, 2007). A practical timetable that does not vielat
hard constraints is called a feasible timetablee $&cond international timetabling competition (2D07) described hard

and soft constraints (Di Gaspero et al, 2007).

Timetablings are combinatorial optimization probsemwhich consist of scheduling a set of coursekiwi given
number of rooms and time periods. Solving a realdvimetablingproblem manually often requires gngicant amount
of time, sometimes several days or even weeks (Admttheret al 2000). The manual solution of the timetablinglypeon
usually requires several days of work and the fsmlition may be unsatisfactory because it is alpigomplex task to
verify all constraints. For the above reasons, icemable attention has been devoted to automateétabling.

A large number of variants of the timetabling peshlhave been proposed in the literature, whickediffrom each other
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based on the type of institution involved and tmetof constraints imposed by the examination gaditthe institution.
Preparation of an academic examination timetabéetigical scheduling problem that appears to ted@mus job in every
academic institute once or twice a year. The prolilevolves the arrangement of courses, studerash&gs and rooms at
a fixed number of time-slots, respecting certastrietions. Wren defines the general problem ofteling as follows:
“Timetablingis the allocation, subject to constraints, of givesources to objects being placed in space timsuch a

way as to satisfy as nearly as possible a setsifatde objectives” (Wren, 1996).

The inability of the classical method to handle ldrge number of real and integer variables invibliresolving
this class of problem and especially the numbecamfstraints involved paved way for the adoptionnoh-classical
techniques. Simulated Annealing (SA), Tabu Seaf@®),(Genetic Algorithm (GA), Memetic Algorithm (MAand Ant
Colony System (ACS) are among the main algorithms golving challenging problems of intelligent ®ysis
(zahra, 2005). In this research, two of these teples were carefully studied and subsequently digwd.

The two algorithms and the hybrid are in turn coragdn terms of their software complexity and siatign time.

Genetic Algorithm (GA) is one of the most populgatimization solutions. It has been implemented amiaus
applications such as scheduling. The operatorsfo§®h as selection, crossover and mutation arkegipjp populations
of chromosomes. Simulated Anneali(f§y is a random-search technique which exploits alogyy between the way in
which a metal cools and freezes into a minimum @nercrystalline structure (the annealing process)
(Elmohamedet al 1998; Omidioreet al, 2009 and Oyeleyet al, 2012). In addition, the search for a minimum imare
general system forms the basis of an optimizatemhnique for solving combinatorial based problethss generally
regarded as a modified version of hill climbing @ithm. It has been proved that by carefully collirg the rate of
cooling of the temperature, SA can find the glodgatimum. However, this requires infinite time. Fasnealing and very
fast simulated reannealing (VFSR) or adaptive siteal annealing (ASA) are each in turn exponentifdister and
overcome this problem. SA's major advantage ovegranethods is an ability to avoid becoming trapipeldcal minima.
The algorithm employs a random search which nog aotepts changes that decrease the objectiveidan@ssuming a
minimization problem), but also some changes theteiase it. An effective solution technique to E€BRId be applied to

other scheduling problems (Abramson, 1991).

Among the leading paradigms for solving ETP are & SA, however, the two algorithms are less effici
because SA converges at an excessive time whileitizes excessive memory before returning redddince, there is a
need to develop an improved algorithm that couldhban at a lesser time and utilize less computiegources
(Oyeleye, et al, 2012). In this work, a hybrid algorithm of SAdGA was developed such that it overcomes the

weaknesses and combines the strength of thesextstng algorithms to solve the a typical univeydsTP.
Timetabling Problem

This problem drew the attention of the researclerthe early 60’s with the study of Gotlieb in 196&2ho
formulated a class-teacher timetabling problem bgsaering that each lecture contained one grougtudent, one
teacher, and any number of time-slots which coel@tosen freely. Schaerf, surveyed that most oé#hnly techniques for
automated timetabling were based on successive entgtion (Schaerf, 1999), where a partial timetakées filled in
lecture by lecture until either all lectures weheduled or no further lecture could be schedulétiont violating
constraints. In another survey, Abramson in 19%bmred the general techniques applied to the prolitethe past, such

as network flow analysis, random number generaitager programming, and linear algorithm. In aidditto these, worth
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mentioning methods are exact method-based heuratiorithm (De Werra, 1985), and graph coloring otlye
(Neufeld and Tartar, 1974). However, the clasdieahniques are not fully capable to handle theelangmber of integer
and/ or real variables and constraints, involvedtlie huge discrete search space of the timetahtirablem.
These inadequacies of classical techniques havendthe attention of the researchers towards the-cltassical
techniques. Worth mentioning non-classical techesguhat were / are being used to solve the probsm genetic
algorithms (Colorni et al., 1990, 1992; Abramsod &bela, 1992), neural network, simulated annealamgl tabu search

algorithm.

However, compared to other non-classical methdus,widely used are the genetic/ evolutionary atbors
(GAs/ EAs). The reason might be their successfplémentation in a wider range of applications. Otiheeobjectives and
constraints are defined, GAs appear tffelo good solutions by evolving without a problem veuj strategy
(Al-Attar, 1994). In the GA, used by Abramson anHefa (1992) to school timetabling problem, a solutis likely to
loose or duplicate a class under crossover operAtegpairing mechanism, in the form of a mutataperator, was used
by them to fix up such lost or duplicated clas$tisla in 1994 applied three evolutive algorithmssttool timetabling
problem, and showed their capability to tackle higtonstrained combinatorial problems, such as tinléng problem.
A timetable is essentially a schedule which mugtasaumber of constraints. Constraints are alroostersally employed

by people dealing with timetabling problems (Budtel 1994).
Simulated Annealing and Genetic Algorithm

Schaffer and Eschelman, 1996 presented the coropaof Simulated annealing (SA) and genetic algorih
(GA) from two major perspectives. SA and GA are stochastic methods currently in wide use for diffi optimization

problems. Their theoretical backgrounds and engdidgomparison are of utmost importance, espedialthis work.
Theoretical Comparison

Theoretically, SA and GA are quite close relativeend much of their difference is superficial.
The two approaches are usually formulated in diffiewvays using different terminologies. With SAearsually considers
solutions, their costs, and neighbours and movéslewvith GA, one talks about individuals (or chrosomes), their
fithess, and selection, crossover and mutatiors dtiference in terminology reflects the differesdée emphasis, but also
serves to obscure the similarities and the re&mihces between SA and GA. Basically, SA can baght as GA where
the population size is only one. The current sotutis the only individual in the population. Sinteere is only one

individual, there is no crossover, but only mutatio

This is in fact the key difference between SA amdl @®/hile SA creates a new solution by modifying yoohe
solution with a local move, GA also creates sohgitoy combining two different solutions. Whethes thctually makes
the algorithm better or worse, is not straightfamyébut depends on the problem and the representiitshould be noted
that both SA and GA share the fundamental assumtiat good solutions are more probably found "hakeady known
good solutions than by randomly selecting from w#iele solution space. If this were not the casenwitparticular
problem or representation, they would perform ntidbehan random sampling.What GA does differehitye is that it
treats combinations of two existing solutions amdeéenear”, making the assumption that such conitlmina (children)
meaningfully share the properties of their pareatsthat a child of two good solutions is more @glp good than a

random solution. Again, if for a particular probleam representation this is not the case, then GI\neit provide an
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advantage over SA.This obviously depends on wheattbssover operator is. If the crossover opeiatpoorly chosen in
respect to the problem and its representation, theecombination will effectively be a random smat This kind of
destructive crossover often results with combinatgeroblems if a chromosome directly expresseslatisn, and can
sometimes be cured by choosing a different reptagen, where a chromosome is thought of as a "typed that only
indirectly expresses a solution, a "phenotype"sTpproach, with two levels of solution represeotathas traditionally
been specific to GA (Schaffer and Eschelman, 1996).

Mihlenbein (1997) presents a theoretical analydisgenetic algorithms based on population genetics.
He counters the popular notion that models thatimimatural phenomenon are superior to other modéis.article argues
that evolutionary algorithms can be inspired byunat but do not necessarily have to copy a nafineahomenon. He
addresses the behavior of transition operatorsianidjns new genetic operators that are not nedgssdated to events in

nature, yet still perform well in practice.
Empirical Comparisons

As advocated by JukkaKohonen in 1999, executiore tshould be considered first when dealing with the
empirical comparisons of optimization algorithmg fmmbinatorial problems. It should be a key eleimghany such
comparison. One of the most important factor carsid before choosing the winner during the secaoternational
timetabling competition (ITC-2007) was the compiatat time (McCollum, 2009). This can be viewed at
http://www.cs.qub.ac.uk/itc2007/winner/bestexarntkratm.

Atfter all, if there were no limits on execution #mone could always perform a complete searchgahthe best
possible solution. Most stochastic algorithms cartlte same, given unlimited time. In practice, ¢hare always some

limits on the execution time.

Also, a key property of stochastic algorithms sashSA and GA is that given more time, they usupityvide
better solutions, at least up to some limit. If.aim empirical comparison, algorithm A is alloweduge more time than
algorithm B, their solution qualities are no longemparable, since there is no indication on hoadgsolutions algorithm
A would have produced given the same time as alguoriB. It is, of course, possible that for shorhdi limits, one

algorithm outperforms, while for longer time limithe other one does.

In 1996, Manikas and Cain compared SA and GA foireuit partitioning problem. They very carefullpayze
the statistical confidence of the results, when garimg approximately 20 trials with each algorititdawever, there is no
mention of the execution time used. Still, theyaoded that "the genetic algorithm was shown talpoe solutions equal
to or better than simulated annealing”. This cosicln may be true, but its relevance is in doubi&bee of the missing

information (Manikas and Cain, 1996).

In 1996 also, Mann and Smith compared SA and GAaftraffic routing problem. They reported the exaxnu
times, but the comparison mainly focuses on salutiost. However, they do not report what happettsifalgorithms are

given the same amount of time(JukkaKohonen, 1999).

GA was proposed by Holland as an algorithm for philistic search, learning, and optimization, asndased in
part on the mechanism of biological evolution arahlin’s theory of evolution. This algorithm is avperful search tool,

particularly when applied to solve combinatoriatinjization problems of this nature. However, thglementation of an
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efficient GA often faces two major problems, on @ie, the premature convergence to local optintecemthe other the
requirements for the GA search of long times ineortb reach an optimal or a good suboptimal sahutia order to

prevent the premature convergence, the couplin@Afand one point search algorithm (local searclorétlym), such as
Simulated Annealing to form hybrid GA can be adegebus (Kanoh and Nakamura, 2000). SA repeatedigrgtes
succeeding solutions using the local search praee@ome of them are accepted and some will betegjeaccording to a
predefined acceptance rule. The acceptance ruieoisvated by an analogy with annealing processemdtallurgy.

On the other hand, GA repeatedly propagates gemesatGenetic algorithms (Liepens and Hilliard, 2@p@&mulate the
evolutionary behavior of biological systems. Thesngrate a sequence of populations of candidatdicmuto the

underlying optimization problem by using a set ehgtically inspired stochastic solution transitaperators to transform
each population of candidate solutions into a dedeet population. The three most popular transitiperators are
reproduction, cross-over, and mutation (Davis, }9®avis and Principe (1991) and Rudolph (1994¢mfit to use
homogeneous finite Markov chain techniques to pravavergence of genetic algorithms (Cerf, 1998j},dva unable to

develop a theory comparable in scope to that ofilsitad annealing.

One criticism of simulated annealing is the slowegpat which it sometimes converges. Delport (1888)bines
simulated annealing with evolutionary algorithmsitgprove performance in terms of speed and qualftysolution.
He improves this hybrid system of simulated anmgaknd evolutionary selection by improving the auplschedule
based on fast recognition of the thermal equiliforitn terms of selection intensity. This techniqasults in much faster

convergence of the algorithm.

Sullivan and Jacobson (2000) links genetic algorghwith simulated annealing using generalized dtithbing
algorithms. They first link genetic algorithms todmal hill climbing algorithms, which can then lbsed, through its

formulation within the generalized hill climbinggalrithm framework, to form a bridge with simulatsihealing.
Software Complexity Measures

Software complexity measures can be used to predtatal information about reliability and mainteaibility of
software systems from automatic analysis of thecsaode (Olabiyiset al, 2005 and 2007). Complexity measures also
provide continuous feedback during a software ptoje help control the development process. Dutiesting and

maintenance, they provide detailed information alsoftware modules to help pinpoint areas of paéirtstability.

There are a number of ways to quantify complexityaiprogram. The best known metrics which providehs
features are Halstead's volume and McCabe's cytiomamber. These metrics have been extensiveligatald and
compared (Aggarwadt al, 2002, Olabiyisiet al, 2005 and 2007). This research focuses on theeioamd Lines of Codes

(LOC) in evaluating the three implemented algorishm
MATERIALS AND METHODS

The two standard algorithms (i.e simulated anngatind Genetic algorithm) and the developed hybrétew
implemented using MATLAB development kit on an IiteDual core CPU with 2.20GHz speed, 2.91GB Random
Acccess Memory (Accessible) and 146GB hard diskedwith windows 7 ultimate edition.

Problem Representation

Examination timetabling is a specific case of thmergeneral timetabling problem.
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In the case of examination timetabling, a set afnex
E={el, ..., en} a be scheduled within a certain number of periods
P={p1,...,pm}
subject to a variety of hard and soft constraiséz (Table 2 below)
(Piola, 1994 and Burket al, 1996; Oyeleyet al, 2012).
Simulated Annealing Pseudocode
Start with the system in a known configurationk@wn energye
T=temperature =hot; frozen=false;
While (! frozen) {
repeat {
Perturb system slightly (e.g., moves a particle)
ComputeE, change in energy due to perturbation
If (AE< 0)
Then accept this perturbation, this is the sgstem config
Else accept maybe, with probability = ex/KT)
} until (the system is in thermal edjuilum at thisT)
If AE still decreasing over the last few temperatures)
Them=0.9T//cool the temperature; do more perturbations

Else frozen=true

return (final configuration as low-energy solution)
Pseudocode for Genetic Algorithm
Step 1Generate initial population.
Step 2Evaluate population.
Step 3Apply Crossover to create offspring.
Step 4Apply Mutation to offspring.
Step 5Select parents and offspring to form the new pdpndor the next generation.
Step 6If termination condition is met finish, otherwise t Step 2.

In general, a GA has five basic components:
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» A genetic representation of potential solutionth®problem.

A way to create a population (an initial set ofgudtal solutions).

* An evaluation function rating solutions in termglagir fithess.

» Genetic operators that alter the genetic composafoffspring (crossover, mutation, selection,)etc

» Parameter values that genetic algorithm uses (p&pual size, probabilities of applying genetic opers, etc.)
(Gen, Cheng, and Lin, 2008; Oyelesteal, 2012).

Pseudocode for the Developed Hybrid SAGA Algorithm
The developed SAGA hybrid algorithm for solving EiBRas follows:
e Set the Initial Temperature T and the Cooling tate pre-determined value.
e Initialize the chromosome length N, number of gatien and Population size.
» Generate timeslot sequence and classroom capadjtyesce foN chromosomes.

* Find the best fit room capacity value for each amdry chromosome using the objective function asd &nd

the maximum classroom-capacity valbeg) amongN number of classrooms.
e Select 2 chromosomes from Number ofchromosomedsaffdeSelection).

e Crossover the selected chromosomes with the priityahs 0.9 and Mutate the new chromosomes with the

probability to get new chromosomes. (Perform Cressand Mutation).
» Find the appropriate Timeslot values for newly gated chromosomes using the objective function.

* Choose theN best chromosomes which have the maximum room-dgpaadues from the newly generated and

also from old chromosomes.
» Find the optimal room-capacity valuges) among theéN best chromosomes.
« If bestchromosome is not changed over a period of time timel a new chromosome.

» Accept the new chromosome lasstwith probability as expAE/KT), even though current position is worse. Here
AE is the difference between the initial temperaflirand the temperature of the best chromosome vilus.
Boltzmann’s constant and it is 1.381 x*£0

* ReduceT by the cooling ratéCooling Schedule).

» If the maximum number of iterations is reached @tiroal value is obtained Or<D then Terminate and Produce

Result Else Goto step 3.

Steps 1, 11 and 12 and 13 are the cooling schemfumulated annealing used as the starting armtingn
conditions of the hybrid algorithm. They made itspible for the algorithm to converge without wagtithhe system

resources of simulation time. Other steps are ts@érform the operations of genetic algorithm.
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The hybrid is a representation of genetic algorithyperations fully embedded withing the cooling stiie of

simulated annealing.
Data Used for the Work
The following are the set of data used to autoralijigenerate the examination timetable:
» Available venues and their corresponding capacity
» Special examination venue (if any) and capacity
» List of subjects (exams) to be written
e The list of all registered students per exam orseu
e The list of available invigilators
* Maximum examination period (no of exam days or vggek
» Duration of each examination (maximum number ofrepu

The Summary of Data Used

Table 1

No_of courses 652
No_of venues 52
Total No of students 20,100
Total sitting capacity 6872
per time

Exam Venue Capacity
500 and above 5
200 to 499 1
50 to 199 33
1to 49 13 (Oyeleyet al, 2012)

Complexity of the Three Algorithms

In order to evaluate the coded algorithms, softwemenplexity metrics were adopted. Software compyexi
metrics used were Halstead software complexity meaand Lines of Code (LOC). Halstead measure lzd&siprogram
volume, program effort, program level and inteltige content of the program. The formulae for méaguhese metrics
are as presented in Table 3. These measures ateimder the assumption that the program is "pure.,'free of so-called

"poor programming practices." (Olabiyisti al,2005 and 2007; Oyeley al, 2012).
RESULTS AND DISCUSSIONS

After the implementation of the three algorithmaple 4 shows the measured parameters and thedugaralues
which are in turn used to calculate the softwanmmexity of the algorithms. It should be noted thatis the number of
distinct operators found in the program, n2 isnbenber of distinct operands, N1 is the total nundfesperators, N2 is

the total number of operands, N is the additioNbfand N2 and n is the addition of n1 and n2.
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Table 5 shows that the three algorithms producediliée solutions, because none violated the cantdra

considered in this work. Table 2 contains the surgrofithe hard and soft constraints considered.
Simulation Time

The time utilized by an algorithm to run until thessult is produced is usually called execution tonsimulation
time. Table 5 and Figure 1 show the measured vahiethe simulation time of the three consideredodtgms.
The simulation time of GA, SA and the developed 2A@ybrid are 19.73, 56.16 and 17.67 seconds resgdgto return
a feasible examination timetable. This is a clegdence that SA utilized more time than GA, white developed SAGA

hybrid algorithm used the least time.
Program Size

The program size is the amount of disk space oecduand it is usually measured in bits, bytes, kiteb (Kb),
Megabytes, Gigabyte, Terabytes, etc depending ®mdtual size under consideration. Table 5 andr&igwshow that the
program sizes of GA, SA and SAGA Hybrid algorithars 20Kb, 16.5Kb and 6.5kb respectively. These oredsvalues
clearly show that GA code utilized more disk spdwmn SA while the developed SAGA hybrid occupies fdgast disk

space.
Lines of Code

The lines of code (LOC) is the number of linesta executable codes in a program. Table 5 showuheber of
lines of the implemented algorithms. The LOC of &4 and the developed SAGA hybrid algorithm are, 585 and 194
respectively. These values show that GA code has momber of executable lines of code while theettijped SAGA
hybrid algorithm has the least. This is an indmatihat the implementation time and effort requibgdGA was more than
the other two and the developed SAGA Hybrid hadehst.

Program Volume

The program volume (V) is the value that signifies volume of the computer memory being utilizedrniythe
execution of the implemented algorithms. The progneolume for Genetic Algorithm, Simulated annealiagd the
developed SAGA hybrid are 2108.07, 2088.00 and PBBEespectively. These values are shown in TalaedbFigure 3.
It shows that the SAGA Hybrid occupies lesser mgnspace in terms of volume than the other two, svA occupies

more memory space.
Program Effort

This is widely known as the number of discriminasomade in the preparation of a program, it speithe
extent to which personnel involved in software praién are effectively engaged. It could also bierred to as the

guantitative measure of the effort involved in timplementation of an algorithm.

The measured values for the three considered #igusiare presented in Table 5 and Figure 4. Thgrano
effort of GA, SA and the developed SAGA hybrid 88¥29.12, 17013.33 and 11230.38 respectively. iEhas indication
that the program effort of GA is the highest, faled by SA, while the developed SAGA hybrid hasldzest.

Program Level / Difficulty of Understanding the Program

This program level (L) otherwise called difficulty understanding a program. As presented in TalaledbFigure
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5, GA, SA, and the developed SAGA hybrid algorithas 0.06, 0.12 and 0.16 respectively as their sdiuethe difficulty
of understanding the program. The result reveatatl A is more difficult to understand than GA whihe developed

SAGA hybrid is the most difficult to understandtbé three implemented algorithms.
Intelligent Content of the Program

The Intelligent Content of the Program is the gitative representation of how logically reasonabled
experienced the program writer is. Table 5 and feiglishow the intelligent content of the program@®, SA, and the
developed SAGA hybrid algorithm to be 131.75, 256ahd 284.03 respectively. These values indid¢atethe developed
SAGA hybrid algorithm is the most logically reasbleaclosely followed by SA while GA is the leasgically reasonable.

Peculiarities of the Developed SAGA Hybrid Algorithm

Some of the peculiar features of the SAGA Hybrgbakhm were studied and evaluated by varying thlees of
its major components, such as the initial tempeeatvate of cooling, number of generations and faimn sizes.
The effect of the variations were consequently okegkon the Simulation Time, Number of courseshddsand number
of lecturers double booked. Since the three algmst returned feasible solutions therefore emphaass further laid on

the simulation time.

Table 6 shows that none of the scheduled courseshadl and none of the lecturers on invigilation dagble
booked. It was also observed that reducing the murmbgenerations reduces the simulation time. &foee, the more the

number of generation the more the simulation time.
Number of Generations and Initial Temperature

Table 6 shows the effect of number of generatiowslaitial temperature on simulation time. The SAGybrid
model provided feasible solution with minimum Numlé Generations and reasonable Initial Temperatlieble 6

shows that variation in simulation time of varidngial temperature and number of generation 1@, 1@00 and 10000.

The table further shows that at number of genamatib 100 and an initial temperature of 100 a reabtm
simulation time of 2.6052 seconds was obtainedak therefore easily observed that the increaserimber of generation
has a considerable effect on simulation time tim@neiase in initial temperature. So, the more thmbar of generation the
more the simulation time. The variation of theialitemperature does not have a noticeable effie¢che simulation time

as does the variation in number of generation.T3dxe 6.
Simulation Time — Initial Temperature and Cooling Rate at Constant Number of Generation and Populatiorsize

Table 7 below shows the simulation time of vari@a®ling rates at different initial temperaturescanstant
number of generations of 100 and number of pomrati0000. A thorough study of the table shows thatminimum
simulation time was obtained at an initial tempearatof 220 and cooling rate of 0.001 as highlighiethble 7.

In summary, both initial temperature and coolintg raf the Simulated Annealing components have impacthe
simulation time of the developed SAGA hybrid algiomi. This is an indication that by carefully seilegtan initial
temperature and carefully selecting a suitableiogalate, the algorithm tends to perform betterdturning quickly a

feasible solution.

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0



Hybrid Metaheuristic of Simulated Annealing and Geretic Algorithm for Solving Examination Timetabling Problem 17

The Effect of Population Size and Number of Generain on Simulation Time at Constant Initial Temperature and

Cooling Rate

The developed SAGA hybrid algorithm was subjectedvarious population sizes and different Number of
generation at constant Initial temperature of 288 aooling rate of 0.001. The Simulation time oé thigorithm was
observed to vary as presented in Table 8. It wasmkd that 10000 number of population with 10 neimdd generation

produced the minimum simulation time.

This cannot be taken as the best parameter siscendhne the number of generation the better wiltheequality
of the final result. Table 8 further shows that thte at which the simulation time increases wiinber of generation is
higher than the rate it increases with number giytetion. This shows that the more the number okggtions the more
the simulation time. Hence, by carefully contrajlithe Number of Generation also leads to a greatirction in the time
the algorithm takes before returning feasible tssut can therefore be deduced here, that increaskee Number of
Population has a negligible effect on the Simutatibme compared to the highly noticeable effectimafrease in the

Number of Generation on simulation time.
CONCLUSIONS

The three considered algorithms produced feasibleetsity examination timetable, but the develoj®8GA
hybrid algorithm used the least computing resouafdsme and space. It utilized the least simulatine, program size,

lines of code, program volume, program effort, gmelhighest intelligent content of the program.

Conclusively, the results generated from the amalyslicates a very high consumption of computiegources
by genetic algorithm while simulated annealing Hssshow that though the consumption of computiagources is

reduced yet the two algorithms still consume coersidle computing resources compared to their hytmiichterpart.

Table 2: Summary of Constraints Considered

Label Definition
HC1 The number of exams a student will write atreet
HC2 Number of classes a teacher should be at a time
HC3 | Number of examination in the schedule
HC4 | The Type and Capacity of the room where a d¢taksbe scheduled
HC5 | Number of timeslot at which an examination abarse is to be scheduled
SC1 | Total number of free time-slots between twaw@rations (or events) of students
SC2 Total number of consecutive classes of a teache
HC — Hard Constraints
SC — Soft Constraints

Table 3: Formulae for Measuring the Complexity Metiics of the Three Algorithms

Complexity Metrics Formulae
Volume (V) N* logh
Effort (E) V/L
Program Level (L) (2*n2) | (n1*N2)
Intelligent Content of the program (1) L*V

www.iaset.us editor@iaset.us
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Table 4: Data Obtained for Measuring the Complexityof the Three Algorithms

GA SA | SAGA HYBRID
No of Distinct operators (n1) 14 10 13
No of Distinct operands (n2) 42 54 92
Total Number of operators (N1 267 260 177
Total Number of operands (N2) 96 88 89
Ni.e. (N1+N2) 363 348 266
ni.e. (n1+n2) 56 64 105

Table 5: Data Obtained During and After the Executon of the Three Algorithms

Parameters GA SA SAGA Hybrid
Simulation Time (seconds) 19.73 56.16 17.67
Number of Courses Clashing 0 0 0
Number of Lecturers Double Booked 0 0 0
Program Size (KB) 20 16.5 6.5
Lines of code 500 256 194
Program Volume (V) 2108.07 2088.0D 1785.99
Program Effort (E) 33729.12 17013.33 11230.38
Difficulty of Understanding the Program 0.06 0.12 16
Intelligent Content of the Program 131.75 256.25 4.08

Table 6: The Effect of Initial Temperature and Number of Generations on Simulation Time

Initial Simulation Time _of Different Cﬁgrg];s No of Lecturers
Temperature Generation Clashed Double Booked
10 100 1000 10000 0 0
10 0.4856| 3.7752 27.8462 270.531 0 0
100 0.3744| 2.6052 27.9398 271.567 0 0
1000 0.4056 3.6192 25.241  283.048 0 0
10000 0.3744 3.0108 30.6542 360.9239 0 0
100000 0.3584 3.541p 29.7494 309.4P8 0 0
1000000 0.4056 3.4320 28.0022 281.847 0 0

Table 7: The Simulation Time of Some Initial Tempeature and Various Cooling Rates at

Constant Number of Generations (100) and Number dPopulation (10000)

Initial Simulation Time of Different Cooling Rates
Temperature (Seeante)
0.1 0.01 0.001 0.0001
10 3.4320 2.4648 3.3696 3.4164
20 3.9624 3.0576 3.2760 3.120(
30 3.3852 3.4008 2.7456 3.010¢
40 2.6676 2.8080 3.8064 2.9177
50 3.5256 3.6660 3.2916 2.7924
60 3.1356 3.1356 2.8548 2.83972
70 2.9640 2.9640 3.1356 2.698¢
80 2.7768 2.8860 2.8548 3.900(
90 3.0420 2.6364 2.9328 3.135¢
100 2.8236 3.0888 3.7284 3.7596
150 3.7596 2.8704 2.6052 3.4944
180 3.1044 3.1512 3.6972 2.8548
200 2.6052 2.6208 2.9484 3.8688

Impact Factor (JCC): 3.1323

Index Copernicus Value (ICV): 3.0
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Table 7: Contd.,

210 3.5256 2.8080 3.5568 3.2136¢
220 2.9328 3.5568 | 2.3712 2.7456

230 3.7284 3.5100 3.3540 2.4804
250 3.4230 3.3852 2.4648 3.510(
300 3.7284 3.6036 2.7768 2.9484
350 4.3368 4.2432 3.2604 4.290(
400 3.9000 4.0716 2.5272 3.6036¢
450 3.5568 3.8688 3.5724 3.6504
500 3.5568 4.2276 3.9154 3.8844

Table 8: Simulation Time — Population Size and Numér of Generation at
Constant Initial Temperature (220) and Cooling Ratg0.001)

Simulation Time of Different Number of Generation

e Secong)
10 100 150 200 210
10000 0.3588 2.4336 4.1808 4.6160 4.9452
15000 0.3588 2.5584 4.5708 7.1136 6.5988
20000 0.3744 2.9328 4.6020 6.8796 6.5676)
25000 0.4680 2.5272 4.5552 6.4272 6.6612
26000 0.3588 3.1512 4.0716 7.3944 5.9436
27000 0.4368 3.432( 3.6348 6.8952 7.2072
28000 0.4836 3.432( 4.7580 5.4288 7.0356
30000 0.3744 3.042Q 4.1496 6.2400 5.7876
35000 0.4524 2.6988 3.7128 5.6004 5.7408
40000 0.4680 2.8704 5.2104 6.3960 6.5520
45000 0.4368 2.5428 4.8828 6.0216 6.8796
50000 0.3744 2.6208 4.4304 6.1464 6.5052

@
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Figure 1: The Simulation Time of the Three Algorithms
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Figure 2: The Program Size of the Three Algorithms
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40000

35000

30000

25000 A

20000 A

15000 A
10000
5000 E
[ T T
GA SA

SAGAHybrid

Program Effort (E)

Figure 4: Program Effort of the Three Algorithms
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Figure 5: Program Level / Difficulty of Understanding the Programs
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Figure 6: The Program Level (i.e. Difficulty of Understanding the Program) of the Three Algorithms
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