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ABSTRACT  

This paper introduces a hybrid metaheuristic of Simulated Annealing (SA) and Genetic Algorithm (GA) and 

demonstrates its superiority over the two hybridized algorithms in terms of their simulation time and software complexity 

measurement when used to solve a typical University Examination Timetabling Problem (ETP).Preparation of a timetable 

consists basically of allocating a number of events to a finite number of time periods (also called slots) in such a way that a 

certain set of constraints is satisfied. The developed model was used to schedule the first semester examination of Ladoke 

Akintola University of Technology, Ogbomoso Nigeria during the 2010/2011 session. A task involving 20,100 students, 

652 courses, 52 examination venues for 17days excluding Saturdays and Sundays.The use of the implemented model 

resulted in significant time savings in the scheduling of the timetable, a shortening of the examination period and a well 

spread examination for the students. Also, none of the lecturers / examination invigilators was double booked or booked 

successively. It was clearly evident that the hybrid model outperformed Simulated Annealing and Genetic Algorithm in 

most of the evaluated parameters. 

KEYWORDS:  Hybrid Model, Simulated Annealing, Genetic Algorithm, Examination Timetabling Problem, Simulation 

Time and Software Complexity 

INTRODUCTION 

Preparation of a timetable consists basically of allocating a number of events to a finite number of time periods 

(also called slots) in such a way that a certain set of constraints is satisfied. Two types of constraints are usually considered, 

hard constrains, that have to be fulfilled under all circumstances, and soft constraints, that should be fulfilled if possible.    

In some cases, it is not possible to fully satisfy all the constraints, and the aim turns to be finding good solutions subject to 

certain quality criteria (e.g., minimizing the number of violated constraints, or alternatively satisfaction of hard constraints, 

while the number of violated soft constraints is minimized (Keshav et al, 2007). A practical timetable that does not violate 

hard constraints is called a feasible timetable. The second international timetabling competition (ITC2007) described hard 

and soft constraints (Di Gaspero et al, 2007). 

Timetablings are combinatorial optimization problems, which consist of scheduling a set of courses within a given 

number of rooms and time periods. Solving a real world timetablingproblem manually often requires a significant amount 

of time, sometimes several days or even weeks (Abdennadher et al, 2000). The manual solution of the timetabling problem 

usually requires several days of work and the final solution may be unsatisfactory because it is a highly complex task to 

verify all constraints. For the above reasons, considerable attention has been devoted to automated timetabling.                   

A large number of variants of the timetabling problem have been proposed in the literature, which differs from each other 
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based on the type of institution involved and the type of constraints imposed by the examination policy of the institution. 

Preparation of an academic examination timetable is a typical scheduling problem that appears to be a tedious job in every 

academic institute once or twice a year. The problem involves the arrangement of courses, students, teachers and rooms at 

a fixed number of time-slots, respecting certain restrictions. Wren defines the general problem of timetabling as follows: 

“Timetabling is the allocation, subject to constraints, of given resources to objects being placed in space time, in such a 

way as to satisfy as nearly as possible a set of desirable objectives” (Wren, 1996). 

The inability of the classical method to handle the large number of real and integer variables involved in solving 

this class of problem and especially the number of constraints involved paved way for the adoption of non-classical 

techniques. Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA), Memetic Algorithm (MA) and Ant 

Colony System (ACS) are among the main algorithms for solving challenging problems of intelligent systems                        

(Zahra, 2005). In this research, two of these techniques were carefully studied and subsequently hybridized.                    

The two algorithms and the hybrid are in turn compared in terms of their software complexity and simulation time. 

Genetic Algorithm (GA) is one of the most popular optimization solutions. It has been implemented in various 

applications such as scheduling. The operators of GA such as selection, crossover and mutation are applied to populations 

of chromosomes. Simulated Annealing (SA) is a random-search technique which exploits an analogy between the way in 

which a metal cools and freezes into a minimum energy crystalline structure (the annealing process)                      

(Elmohamed et al 1998; Omidiora et al, 2009 and Oyeleye et al, 2012). In addition, the search for a minimum in a more 

general system forms the basis of an optimization technique for solving combinatorial based problems. It is generally 

regarded as a modified version of hill climbing algorithm. It has been proved that by carefully controlling the rate of 

cooling of the temperature, SA can find the global optimum. However, this requires infinite time. Fast annealing and very 

fast simulated reannealing (VFSR) or adaptive simulated annealing (ASA) are each in turn exponentially faster and 

overcome this problem. SA's major advantage over other methods is an ability to avoid becoming trapped in local minima. 

The algorithm employs a random search which not only accepts changes that decrease the objective function (assuming a 

minimization problem), but also some changes that increase it. An effective solution technique to ETP could be applied to 

other scheduling problems (Abramson, 1991). 

Among the leading paradigms for solving ETP are GA and SA, however, the two algorithms are less efficient 

because SA converges at an excessive time while GA utilizes excessive memory before returning result. Hence, there is a 

need to develop an improved algorithm that could both run at a lesser time and utilize less computing resources            

(Oyeleye, et al., 2012). In this work, a hybrid algorithm of SA and GA was developed such that it overcomes the 

weaknesses and combines the strength of these two existing algorithms to solve the a typical university ETP. 

Timetabling Problem 

This problem drew the attention of the researchers in the early 60’s with the study of Gotlieb in 1962, who 

formulated a class-teacher timetabling problem by considering that each lecture contained one group of student, one 

teacher, and any number of time-slots which could be chosen freely. Schaerf, surveyed that most of the early techniques for 

automated timetabling were based on successive augmentation (Schaerf, 1999), where a partial timetable was filled in 

lecture by lecture until either all lectures were scheduled or no further lecture could be scheduled without violating 

constraints. In another survey, Abramson in 1991 reported the general techniques applied to the problem in the past, such 

as network flow analysis, random number generator, integer programming, and linear algorithm. In addition to these, worth 
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mentioning methods are exact method-based heuristic algorithm (De Werra, 1985), and graph coloring theory                 

(Neufeld and Tartar, 1974). However, the classical techniques are not fully capable to handle the large number of integer 

and/ or real variables and constraints, involved in the huge discrete search space of the timetabling problem.                         

These inadequacies of classical techniques have drawn the attention of the researchers towards the non-classical 

techniques. Worth mentioning non-classical techniques, that were / are being used to solve the problem, are genetic 

algorithms (Colorni et al., 1990, 1992; Abramson and Abela, 1992), neural network, simulated annealing, and tabu search 

algorithm.  

However, compared to other non-classical methods, the widely used are the genetic/ evolutionary algorithms 

(GAs/ EAs). The reason might be their successful implementation in a wider range of applications. Once the objectives and 

constraints are defined, GAs appear to offer good solutions by evolving without a problem solving strategy                     

(Al-Attar, 1994). In the GA, used by Abramson and Abela (1992) to school timetabling problem, a solution is likely to 

loose or duplicate a class under crossover operator. A repairing mechanism, in the form of a mutation operator, was used 

by them to fix up such lost or duplicated classes. Piola in 1994 applied three evolutive algorithms to school timetabling 

problem, and showed their capability to tackle highly constrained combinatorial problems, such as timetabling problem.      

A timetable is essentially a schedule which must suit a number of constraints. Constraints are almost universally employed 

by people dealing with timetabling problems (Burke et al, 1994). 

Simulated Annealing and Genetic Algorithm 

Schaffer and Eschelman, 1996 presented the comparison of Simulated annealing (SA) and genetic algorithms 

(GA) from two major perspectives. SA and GA are two stochastic methods currently in wide use for difficult optimization 

problems. Their theoretical backgrounds and empirical comparison are of utmost importance, especially to this work. 

Theoretical Comparison 

Theoretically, SA and GA are quite close relatives, and much of their difference is superficial.                  

The two approaches are usually formulated in different ways using different terminologies. With SA, one usually considers 

solutions, their costs, and neighbours and moves; while with GA, one talks about individuals (or chromosomes), their 

fitness, and selection, crossover and mutation. This difference in terminology reflects the differences in emphasis, but also 

serves to obscure the similarities and the real differences between SA and GA. Basically, SA can be thought as GA where 

the population size is only one. The current solution is the only individual in the population. Since there is only one 

individual, there is no crossover, but only mutation. 

This is in fact the key difference between SA and GA. While SA creates a new solution by modifying only one 

solution with a local move, GA also creates solutions by combining two different solutions. Whether this actually makes 

the algorithm better or worse, is not straightforward, but depends on the problem and the representation.It should be noted 

that both SA and GA share the fundamental assumption that good solutions are more probably found "near" already known 

good solutions than by randomly selecting from the whole solution space. If this were not the case with a particular 

problem or representation, they would perform no better than random sampling.What GA does differently here is that it 

treats combinations of two existing solutions as being "near", making the assumption that such combinations (children) 

meaningfully share the properties of their parents, so that a child of two good solutions is more probably good than a 

random solution. Again, if for a particular problem or representation this is not the case, then GA will not provide an 
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advantage over SA.This obviously depends on what the crossover operator is. If the crossover operator is poorly chosen in 

respect to the problem and its representation, then a recombination will effectively be a random solution. This kind of 

destructive crossover often results with combinatorial problems if a chromosome directly expresses a solution, and can 

sometimes be cured by choosing a different representation, where a chromosome is thought of as a "genotype" that only 

indirectly expresses a solution, a "phenotype". This approach, with two levels of solution representation, has traditionally 

been specific to GA (Schaffer and Eschelman, 1996). 

Mühlenbein (1997) presents a theoretical analysis of genetic algorithms based on population genetics.                     

He counters the popular notion that models that mimic natural phenomenon are superior to other models. The article argues 

that evolutionary algorithms can be inspired by nature, but do not necessarily have to copy a natural phenomenon. He 

addresses the behavior of transition operators and designs new genetic operators that are not necessarily related to events in 

nature, yet still perform well in practice. 

Empirical Comparisons 

As advocated by JukkaKohonen in 1999, execution time should be considered first when dealing with the 

empirical comparisons of optimization algorithms for combinatorial problems. It should be a key element of any such 

comparison. One of the most important factor considered before choosing the winner during the second international 

timetabling competition (ITC-2007) was the computation time (McCollum, 2009). This can be viewed at 

http://www.cs.qub.ac.uk/itc2007/winner/bestexamtrack.htm.  

After all, if there were no limits on execution time, one could always perform a complete search, and get the best 

possible solution. Most stochastic algorithms can do the same, given unlimited time. In practice, there are always some 

limits on the execution time. 

Also, a key property of stochastic algorithms such as SA and GA is that given more time, they usually provide 

better solutions, at least up to some limit. If, in an empirical comparison, algorithm A is allowed to use more time than 

algorithm B, their solution qualities are no longer comparable, since there is no indication on how good solutions algorithm 

A would have produced given the same time as algorithm B. It is, of course, possible that for short time limits, one 

algorithm outperforms, while for longer time limits, the other one does.  

In 1996, Manikas and Cain compared SA and GA for a circuit partitioning problem. They very carefully analyze 

the statistical confidence of the results, when comparing approximately 20 trials with each algorithm. However, there is no 

mention of the execution time used. Still, they concluded that "the genetic algorithm was shown to produce solutions equal 

to or better than simulated annealing". This conclusion may be true, but its relevance is in doubt because of the missing 

information (Manikas and Cain, 1996). 

In 1996 also, Mann and Smith compared SA and GA for a traffic routing problem. They reported the execution 

times, but the comparison mainly focuses on solution cost. However, they do not report what happens if the algorithms are 

given the same amount of time(JukkaKohonen, 1999). 

GA was proposed by Holland as an algorithm for probabilistic search, learning, and optimization, and is based in 

part on the mechanism of biological evolution and Darwin’s theory of evolution. This algorithm is a powerful search tool, 

particularly when applied to solve combinatorial optimization problems of this nature. However, the implementation of an 
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efficient GA often faces two major problems, on one side, the premature convergence to local optima and on the other the 

requirements for the GA search of long times in order to reach an optimal or a good suboptimal solution. In order to 

prevent the premature convergence, the coupling of GA and one point search algorithm (local search algorithm), such as 

Simulated Annealing to form hybrid GA can be advantageous (Kanoh and Nakamura, 2000). SA repeatedly generates 

succeeding solutions using the local search procedure. Some of them are accepted and some will be rejected, according to a 

predefined acceptance rule. The acceptance rule is motivated by an analogy with annealing processes in metallurgy.           

On the other hand, GA repeatedly propagates generations. Genetic algorithms (Liepens and Hilliard, 1989) emulate the 

evolutionary behavior of biological systems. They generate a sequence of populations of candidate solutions to the 

underlying optimization problem by using a set of genetically inspired stochastic solution transition operators to transform 

each population of candidate solutions into a descendent population. The three most popular transition operators are 

reproduction, cross-over, and mutation (Davis, 1991). Davis and Principe (1991) and Rudolph (1994) attempt to use 

homogeneous finite Markov chain techniques to prove convergence of genetic algorithms (Cerf, 1998), but are unable to 

develop a theory comparable in scope to that of simulated annealing. 

One criticism of simulated annealing is the slow speed at which it sometimes converges. Delport (1998) combines 

simulated annealing with evolutionary algorithms to improve performance in terms of speed and quality of solution.          

He improves this hybrid system of simulated annealing and evolutionary selection by improving the cooling schedule 

based on fast recognition of the thermal equilibrium in terms of selection intensity. This technique results in much faster 

convergence of the algorithm. 

Sullivan and Jacobson (2000) links genetic algorithms with simulated annealing using generalized hill climbing 

algorithms. They first link genetic algorithms to ordinal hill climbing algorithms, which can then be used, through its 

formulation within the generalized hill climbing algorithm framework, to form a bridge with simulated annealing. 

Software Complexity Measures 

Software complexity measures can be used to predict critical information about reliability and maintainability of 

software systems from automatic analysis of the source code (Olabiyisi et al, 2005 and 2007). Complexity measures also 

provide continuous feedback during a software project to help control the development process. During testing and 

maintenance, they provide detailed information about software modules to help pinpoint areas of potential instability. 

There are a number of ways to quantify complexity in a program. The best known metrics which provide such 

features are Halstead's volume and McCabe's cyclomatic number. These metrics have been extensively validated and 

compared (Aggarwal et al, 2002, Olabiyisi et al, 2005 and 2007). This research focuses on the former and Lines of Codes 

(LOC) in evaluating the three implemented algorithms.. 

MATERIALS AND METHODS 

The two standard algorithms (i.e simulated annealing and Genetic algorithm) and the developed hybrid were 

implemented using MATLAB development kit on an Intel® Dual core CPU with 2.20GHz speed, 2.91GB Random 

Acccess Memory (Accessible) and 146GB hard disk drive with windows 7 ultimate edition. 

Problem Representation 

Examination timetabling is a specific case of the more general timetabling problem.  
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In the case of examination timetabling, a set of exams  

E = {e1, . . . , en}    to be scheduled within a  certain number of periods  

P = {p1, . . . , pm}  

subject to a variety of hard and soft constraints (see Table 2 below).  

(Piola, 1994 and Burke et al, 1996; Oyeleye et al, 2012). 

Simulated Annealing Pseudocode 

Start with the system in a known configuration, at known energy E 

T=temperature =hot; frozen=false;  

While (! frozen) {        

repeat {    

Perturb system slightly (e.g., moves a particle) 

   Compute E, change in energy due to perturbation 

    If (∆E< 0)        

      Then accept this perturbation, this is the new system config 

   Else accept maybe, with probability =   exp(-∆E/KT)         

            } until (the system is in thermal equilibrium at this T)        

            If (∆E still decreasing over the last few temperatures)   

            Then T=0.9T//cool the temperature; do more perturbations  

            Else frozen=true 

 }  

return (final configuration as low-energy solution) 

Pseudocode for Genetic Algorithm 

Step 1 Generate initial population.  

Step 2 Evaluate population.  

Step 3 Apply Crossover to create offspring.  

Step 4 Apply Mutation to offspring.  

Step 5 Select parents and offspring to form the new population for the next generation.  

Step 6 If termination condition is met finish, otherwise go to Step 2.  

In general, a GA has five basic components:  
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• A genetic representation of potential solutions to the problem.  

• A way to create a population (an initial set of potential solutions).   

• An evaluation function rating solutions in terms of their fitness.  

• Genetic operators that alter the genetic composition of offspring (crossover, mutation, selection, etc.).  

• Parameter values that genetic algorithm uses (population size, probabilities of applying genetic operators, etc.) 

(Gen, Cheng, and Lin, 2008; Oyeleye et al, 2012). 

Pseudocode for the Developed Hybrid SAGA Algorithm 

The developed SAGA hybrid algorithm for solving ETP is as follows:  

• Set the Initial Temperature T and the Cooling rate to a pre-determined value. 

• Initialize the chromosome length N, number of generation and Population size. 

• Generate timeslot sequence and classroom capacity sequence for N chromosomes.  

• Find the best fit room capacity value for each and every chromosome using the objective function and also find 

the maximum classroom-capacity value (best) among N number of classrooms.  

• Select 2 chromosomes from Number ofchromosomes (Perform Selection).  

• Crossover the selected chromosomes with the probability as 0.9 and Mutate the new chromosomes with the 

probability to get new chromosomes. (Perform Crossover and Mutation). 

• Find the appropriate Timeslot values for newly generated chromosomes using the objective function. 

• Choose the N best chromosomes which have the maximum room-capacity values from the newly generated and 

also from old chromosomes.  

• Find the optimal room-capacity value (best) among the N best chromosomes.  

• If best chromosome is not changed over a period of time then find a new chromosome. 

• Accept the new chromosome as best with probability as exp-(∆E/KT), even though current position is worse. Here 

∆E is the difference between the initial temperature T and the temperature of the best chromosome value. K is 

Boltzmann’s constant and it is 1.381 x 10-23. 

• Reduce T by the cooling rate (Cooling Schedule).  

• If the maximum number of iterations is reached Or optimal value is obtained Or T≤0 then Terminate and Produce 

Result Else Goto step 3. 

 Steps 1, 11 and 12 and 13 are the cooling schedule of simulated annealing used as the starting and ending 

conditions of the hybrid algorithm. They made it possible for the algorithm to converge without wasting the system 

resources of simulation time. Other steps are used to perform the operations of genetic algorithm.  
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The hybrid is a representation of genetic algorithm operations fully embedded withing the cooling schedule of 

simulated annealing. 

Data Used for the Work 

The following are the set of data used to automatically generate the examination timetable: 

• Available venues and their corresponding capacity 

• Special examination venue (if any) and capacity 

• List of subjects (exams) to be written 

• The list of all registered students per exam or course 

• The list of available invigilators 

• Maximum examination period (no of exam days or weeks) 

• Duration of each examination (maximum number of hours) 

The Summary of Data Used 

Table 1 

No_of_courses 652 
No_of_venues 52 
Total No of students 20,100 
Total sitting capacity 
per time 

6872 

Exam Venue Capacity 
500 and above 5 
200 to 499 1 
50 to 199 33 
1 to 49 13 (Oyeleye et al, 2012) 

 

Complexity of the Three Algorithms 

In order to evaluate the coded algorithms, software complexity metrics were adopted. Software complexity 

metrics used were Halstead software complexity measure and Lines of Code (LOC). Halstead measure calculates program 

volume, program effort, program level and intelligence content of the program. The formulae for measuring these metrics 

are as presented in Table 3. These measures are valid under the assumption that the program is "pure," i.e., free of so-called 

"poor programming practices." (Olabiyisi et al, 2005 and 2007; Oyeleye et al., 2012). 

RESULTS AND DISCUSSIONS 

After the implementation of the three algorithms, Table 4 shows the measured parameters and their various values 

which are in turn used to calculate the software complexity of the algorithms. It should be noted that n1 is the number of 

distinct operators found in the program, n2 is the number of distinct operands, N1 is the total number of operators, N2 is 

the total number of operands, N is the addition of N1 and N2 and n is the addition of n1 and n2. 
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Table 5 shows that the three algorithms produced feasible solutions, because none violated the constraints 

considered in this work. Table 2 contains the summary of the hard and soft constraints considered. 

Simulation Time 

The time utilized by an algorithm to run until the result is produced is usually called execution time or simulation 

time. Table 5 and Figure 1 show the measured values of the simulation time of the three considered algorithms.              

The simulation time of GA, SA and the developed SAGA Hybrid are 19.73, 56.16 and 17.67 seconds respectively to return 

a feasible examination timetable. This is a clear evidence that SA utilized more time than GA, while the developed SAGA 

hybrid algorithm used the least time. 

Program Size 

The program size is the amount of disk space occupied and it is usually measured in bits, bytes, kilobytes (Kb), 

Megabytes, Gigabyte, Terabytes, etc depending on the actual size under consideration. Table 5 and Figure 2 show that the 

program sizes of GA, SA and SAGA Hybrid algorithms are 20Kb, 16.5Kb and 6.5kb respectively. These measured values 

clearly show that GA code utilized more disk space than SA while the developed SAGA hybrid occupies the least disk 

space. 

Lines of Code 

The lines of code (LOC) is the number of lines of the executable codes in a program. Table 5 show the number of 

lines of the implemented algorithms. The LOC of GA, SA and the developed SAGA hybrid algorithm are 500, 256 and 194 

respectively. These values show that GA code has more number of executable lines of code while the developed SAGA 

hybrid algorithm has the least. This is an indication that the implementation time and effort required by GA was more than 

the other two and the developed SAGA Hybrid has the least. 

Program Volume 

The program volume (V) is the value that signifies the volume of the computer memory being utilized during the 

execution of the implemented algorithms. The program volume for Genetic Algorithm, Simulated annealing and the 

developed SAGA hybrid are 2108.07, 2088.00 and 1785.99 respectively. These values are shown in Table 5 and Figure 3. 

It shows that the SAGA Hybrid occupies lesser memory space in terms of volume than the other two, while GA occupies 

more memory space. 

Program Effort 

This is widely known as the number of discriminations made in the preparation of a program, it specifies the 

extent to which personnel involved in software production are effectively engaged. It could also be referred to as the 

quantitative measure of the effort involved in the implementation of an algorithm. 

The measured values for the three considered algorithms are presented in Table 5 and Figure 4. The program 

effort of GA, SA and the developed SAGA hybrid are 33729.12, 17013.33 and 11230.38 respectively. This is an indication 

that the program effort of GA is the highest, followed by SA, while the developed SAGA hybrid has the least.  

Program Level / Difficulty of Understanding the Program 

This program level (L) otherwise called difficulty of understanding a program. As presented in Table 5 and Figure 
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5, GA, SA, and the developed SAGA hybrid algorithm has 0.06, 0.12 and 0.16 respectively as their values for the difficulty 

of understanding the program. The result revealed that SA is more difficult to understand than GA while the developed 

SAGA hybrid is the most difficult to understand of the three implemented algorithms. 

Intelligent Content of the Program 

The Intelligent Content of the Program is the quantitative representation of how logically reasonable and 

experienced the program writer is. Table 5 and Figure 6 show the intelligent content of the program for GA, SA, and the 

developed SAGA hybrid algorithm to be 131.75, 256.25, and 284.03 respectively. These values indicate that the developed 

SAGA hybrid algorithm is the most logically reasonable closely followed by SA while GA is the least logically reasonable. 

Peculiarities of the Developed SAGA Hybrid Algorithm 

Some of the peculiar features of the SAGA Hybrid algorithm were studied and evaluated by varying the values of 

its major components, such as the initial temperature, rate of cooling, number of generations and population sizes.                  

The effect of the variations were consequently observed on the Simulation Time, Number of courses clashed and number 

of lecturers double booked. Since the three algorithms returned feasible solutions therefore emphasis was further laid on 

the simulation time. 

Table 6 shows that none of the scheduled courses clashed and none of the lecturers on invigilation was double 

booked. It was also observed that reducing the number of generations reduces the simulation time. Therefore, the more the 

number of generation the more the simulation time. 

Number of Generations and Initial Temperature 

Table 6 shows the effect of number of generations and Initial temperature on simulation time. The SAGA hybrid 

model provided feasible solution with minimum Number of Generations and reasonable Initial Temperature. Table 6 

shows that variation in simulation time of various initial temperature and number of generation 10, 100, 1000 and 10000.  

The table further shows that at number of generation of 100 and an initial temperature of 100 a reasonable 

simulation time of 2.6052 seconds was obtained. It was therefore easily observed that the increase in number of generation 

has a considerable effect on simulation time than increase in initial temperature. So, the more the number of generation the 

more the simulation time. The variation of the initial temperature does not have a noticeable effect on the simulation time 

as does the variation in number of generation. See Table 6. 

Simulation Time – Initial Temperature and Cooling Rate at Constant Number of Generation and Population Size 

Table 7 below shows the simulation time of various cooling rates at different initial temperatures at constant 

number of generations of 100 and number of population 10000. A thorough study of the table shows that the minimum 

simulation time was obtained at an initial temperature of 220 and cooling rate of 0.001 as highlighted in table 7.  

In summary, both initial temperature and cooling rate of the Simulated Annealing components have impact on the 

simulation time of the developed SAGA hybrid algorithm. This is an indication that by carefully selecting an initial 

temperature and carefully selecting a suitable cooling rate, the algorithm tends to perform better in returning quickly a 

feasible solution. 
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The Effect of Population Size and Number of Generation on Simulation Time at Constant Initial Temperature and 

Cooling Rate 

The developed SAGA hybrid algorithm was subjected to various population sizes and different Number of 

generation at constant Initial temperature of 220 and cooling rate of 0.001. The Simulation time of the algorithm was 

observed to vary as presented in Table 8. It was observed that 10000 number of population with 10 number of generation 

produced the minimum simulation time.  

This cannot be taken as the best parameter since the more the number of generation the better will be the quality 

of the final result. Table 8 further shows that the rate at which the simulation time increases with number of generation is 

higher than the rate it increases with number of population. This shows that the more the number of generations the more 

the simulation time. Hence, by carefully controlling the Number of Generation also leads to a greater reduction in the time 

the algorithm takes before returning feasible results. It can therefore be deduced here, that increase in the Number of 

Population has a negligible effect on the Simulation Time compared to the highly noticeable effect of increase in the 

Number of Generation on simulation time. 

CONCLUSIONS 

The three considered algorithms produced feasible university examination timetable, but the developed SAGA 

hybrid algorithm used the least computing resources of time and space. It utilized the least simulation time, program size, 

lines of code, program volume, program effort, and the highest intelligent content of the program. 

Conclusively, the results generated from the analysis indicates a very high consumption of computing resources 

by genetic algorithm while simulated annealing results show that though the consumption of computing resources is 

reduced yet the two algorithms still consume considerable computing resources compared to their hybrid counterpart.  

Table 2: Summary of Constraints Considered 

Label Definition 
HC1 The number of exams a student will write at a time 
HC2 Number of classes a teacher should be at a time 
HC3 Number of examination in the schedule 
HC4 The Type and Capacity of the room where a class is to be scheduled 
HC5 Number of timeslot at which an examination of a course is to be scheduled 
SC1 Total number of free time-slots between two examinations (or events) of students 
SC2 Total number of consecutive classes of a teacher 

HC – Hard Constraints 
SC – Soft Constraints 
 

Table 3: Formulae for Measuring the Complexity Metrics of the Three Algorithms 

Complexity Metrics Formulae 
Volume (V) N* log2n 
Effort (E) V/L 
Program Level (L) (2*n2) / (n1*N2) 
Intelligent Content of the program (I) L*V 
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Table 4: Data Obtained for Measuring the Complexity of the Three Algorithms 

 GA SA SAGA HYBRID 

No of Distinct operators (n1) 14 10 13 

No of Distinct operands (n2) 42 54 92 
Total Number of operators (N1) 267 260 177 
Total Number of operands (N2) 96 88 89 
N i.e. (N1+N2) 363 348 266 
n i.e. (n1+n2) 56 64 105 

 

Table 5: Data Obtained During and After the Execution of the Three Algorithms 

Parameters GA SA SAGA Hybrid 
Simulation Time (seconds) 19.73 56.16 17.67 

Number of Courses Clashing 0 0 0 
Number of Lecturers Double Booked 0 0 0 
Program Size (KB) 20 16.5 6.5 
Lines of code 500 256 194 
Program Volume (V) 2108.07 2088.00 1785.99 
Program Effort (E) 33729.12 17013.33 11230.38 
Difficulty of Understanding the Program 0.06 0.12 0.16 
Intelligent Content of the Program 131.75 256.25 284.03 

 

Table 6: The Effect of Initial Temperature and Number of Generations on Simulation Time 

Initial 
Temperature 

Simulation Time of Different 
Generation 

No of 
Courses 
Clashed 

No of Lecturers 
Double Booked 

 10 100 1000 10000 0 0 
10 0.4856 3.7752 27.8462 270.531 0 0 
100 0.3744 2.6052 27.9398 271.567 0 0 
1000 0.4056 3.6192 25.241 283.048 0 0 
10000 0.3744 3.0108 30.6542 360.9239 0 0 
100000 0.3588 3.5412 29.7494 309.428 0 0 
1000000 0.4056 3.4320 28.0022 281.847 0 0 

 

Table 7: The Simulation Time of Some Initial Temperature and Various Cooling Rates at 
 Constant Number of Generations (100) and Number of Population (10000) 

Initial 
Temperature 

Simulation Time of Different Cooling Rates 
(Seconds) 

0.1 0.01 0.001 0.0001 
10 3.4320 2.4648 3.3696 3.4164 
20 3.9624 3.0576 3.2760 3.1200 
30 3.3852 3.4008 2.7456 3.0108 
40 2.6676 2.8080 3.8064 2.9172 
50 3.5256 3.6660 3.2916 2.7924 
60 3.1356 3.1356 2.8548 2.8392 
70 2.9640 2.9640 3.1356 2.6988 
80 2.7768 2.8860 2.8548 3.9000 
90 3.0420 2.6364 2.9328 3.1356 
100 2.8236 3.0888 3.7284 3.7596 
150 3.7596 2.8704 2.6052 3.4944 
180 3.1044 3.1512 3.6972 2.8548 
200 2.6052 2.6208 2.9484 3.8688 
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Table 7: Contd., 
210 3.5256 2.8080 3.5568 3.2136 
220 2.9328 3.5568 2.3712 2.7456 
230 3.7284 3.5100 3.3540 2.4804 
250 3.4230 3.3852 2.4648 3.5100 
300 3.7284 3.6036 2.7768 2.9484 
350 4.3368 4.2432 3.2604 4.2900 
400 3.9000 4.0716 2.5272 3.6036 
450 3.5568 3.8688 3.5724 3.6504 
500 3.5568 4.2276 3.9156 3.8844 

 
Table 8: Simulation Time – Population Size and Number of Generation at  

Constant Initial Temperature (220) and Cooling Rate (0.001) 

Number of 
Population 

Simulation Time of Different Number of Generation 
(Seconds) 

10 100 150 200 210 
10000 0.3588 2.4336 4.1808 4.6160 4.9452 
15000 0.3588 2.5584 4.5708 7.1136 6.5988 
 20000 0.3744 2.9328 4.6020 6.8796 6.5676 
25000 0.4680 2.5272 4.5552 6.4272 6.6612 
26000 0.3588 3.1512 4.0716 7.3944 5.9436 
27000 0.4368 3.4320 3.6348 6.8952 7.2072 
28000 0.4836 3.4320 4.7580 5.4288 7.0356 
30000 0.3744 3.0420 4.1496 6.2400 5.7876 
35000 0.4524 2.6988 3.7128 5.6004 5.7408 
40000 0.4680 2.8704 5.2104 6.3960 6.5520 
45000 0.4368 2.5428 4.8828 6.0216 6.8796 
50000 0.3744 2.6208 4.4304 6.1464 6.5052 

 

 

Figure 1: The Simulation Time of the Three Algorithms 
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 Figure 2: The Program Size of the Three Algorithms 

 

 

Figure 3: The Program Volume of the Three Algorithms 

 

 

Figure 4: Program Effort of the Three Algorithms 
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Figure 5: Program Level / Difficulty of Understanding the Programs 

 

Figure 6: The Program Level (i.e. Difficulty of Understanding the Program) of the Three Algorithms 
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